物理学报 Acta Physica Sinica

源于非晶合金的透明磁性半导体 陈娜 张盈祺 姚可夫

Transparent magnetic semiconductors from ferromagnetic amorphous alloys

Chen Na Zhang Ying-Qi Yao Ke-Fu

引用信息 Citation: Acta Physica Sinica, 66, 176113 (2017) DOI: 10.7498/aps.66.176113 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.176113 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I17

您可能感兴趣的其他文章 Articles you may be interested in

非晶合金中的流变单元

Flow unit model in metallic glasses 物理学报.2017, 66(17): 176103 http://dx.doi.org/10.7498/aps.66.176103

非晶合金的高通量制备与表征

Combinatorial fabrication and high-throughput characterization of metallic glasses 物理学报.2017, 66(17): 176106 http://dx.doi.org/10.7498/aps.66.176106

小角X射线散射表征非晶合金纳米尺度结构非均匀

Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotronsmall angle X-ray scattering 物理学报.2017, 66(17): 176109 http://dx.doi.org/10.7498/aps.66.176103

基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究 Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model 物理学报.2016, 65(4): 046101 http://dx.doi.org/10.7498/aps.65.046101

基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究

Investigation on the viscoelastic behavior of an Fe-base bulk amorphous alloys based on the fractional order rheological model

物理学报.2015, 64(13): 136101 http://dx.doi.org/10.7498/aps.64.136101

专辑: 非晶物理研究进展

源于非晶合金的透明磁性半导体^{*}

陈娜† 张盈祺 姚可夫

(清华大学材料学院,先进成形制造教育部重点实验室,北京 100084)

(2017年5月26日收到;2017年6月20日收到修改稿)

磁性半导体兼具磁性和半导体特性, 通过操控电子自旋, 有望实现接近完全的电子极化, 提供一种全新的 导电方式和器件概念. 目前磁性半导体的研究对象主要为稀磁半导体, 采用在非磁性半导体中添加过渡族磁 性元素使半导体获得内禀磁性的方法进行制备. 但大部分稀磁半导体仅具有低温磁性, 成为限制其在室温可 操控电子器件中应用的瓶颈. 针对这一关键科学问题, 本文提出与传统稀磁半导体制备方法相反的合成思路, 在磁性非晶合金中引入非金属元素诱发金属-半导体转变, 使磁性非晶获得半导体电性, 研制出具有新奇磁、 光、电耦合特性的非晶态浓磁半导体, 揭示其载流子调制磁性的内禀机理, 发展出可在室温下工作的 p-n 结及 电控磁器件.

关键词: 非晶合金, 磁性半导体, 磁学性能, 磁输运特性 PACS: 61.43.Dq, 75.50.Pp, 75.70.-i, 75.47.-m

1引言

硅基微纳电子和磁存储技术是现代信息产业 和高技术发展的基础. 然而, 随着计算机集成电路 处理器和存储芯片尺寸的不断缩小,芯片过热问题 和尺度效应诱发的量子干涉现象对器件性能的影 响不断增强,半导体工业适用的单个微处理器芯片 上晶体管数量及其处理性能每两年将会翻倍的"摩 尔定律"即将失效^[1]. 分别对磁性金属的自旋调控 和对半导体的电荷调控显然已无法满足现代信息 技术发展的需求,人们期望能对电荷和自旋同时调 控,从而开发更先进、功能更强大的自旋电子器件. 针对这种需求,兼具磁性和半导体电性的磁性半导 体材料脱颖而出, 通过操控电子电荷和电子自旋两 个自由度来实现信息的加工处理、存储乃至输运, 提供了一种全新的导电方式和器件概念^[2-4]. 这种 特性可用于开发新一代电子器件,如自旋场效应管 和自旋发光二极管等,将会大幅度降低能耗、增加 集成密度、提高数据运算速度,在未来的电子行业

DOI: 10.7498/aps.66.176113

具有非常诱人的应用前景.《Science》杂志在 2005 年提出 21 世纪前沿研究的 125 个重要科学问题,其 中"有没有可能创造出室温工作的磁性半导体"就 是专门针对这种新型自旋电子学材料^[5].而磁性半 导体的研制和应用基础研究已经成为自旋电子学 领域的一个重要方向.根据磁性来源,磁性半导体 的发展主要经历了从浓缩磁性半导体到稀磁半导 体的两个阶段.

第一代磁性半导体即浓缩半导体,可以追溯 到1960年代的Eu或Cr的硫族化合物的研究,这些 浓缩磁性半导体在磁性、磁光、磁输运等方面表 现出新奇的物理特性^[6].但是,这种硫族化合物和 常规半导体晶体结构差异较大,很难与其他半导 体材料集成获得高质量的异质结构;同时该材料 制备起来非常困难,居里温度也远低于室温,因此 这些材料只是作为基础科学研究或者概念性器件 研究.第二代磁性半导体即稀磁半导体的概念从 1980年代开始被引入,通过在传统半导体中添加过 渡族磁性金属元素获得,特别是III-V族稀磁半导

^{*} 国家自然科学基金(批准号: 51471091)资助的课题.

[†]通信作者. E-mail: chennadm@mail.tsinghua.edu.cn

^{© 2017} 中国物理学会 Chinese Physical Society

体(In,Mn)As和(Ga,Mn)As等的出现直接带动了 半导体自旋电子学的发展[7].这些稀磁半导体易 与常规半导体匹配,且和半导体制备工艺兼容,采 用分子束外延技术能够获得高质量的异质结构进 行自旋产生、注入和调控的研究^[8]及探索自旋电子 器件 [9]. 但是, 这些稀磁半导体的居里温度低于室 温, 难以进行室温可操控自旋电子器件的开发和应 用. Dietl 等^[10]提出Zener模型可用于描述具有闪 锌矿晶体结构的稀磁半导体的磁性来源,并通过理 论计算指出 GaMnN 和 ZnMnO 稀磁半导体的居里 温度可能高达室温,这为随后报道的ZnO基等室 温稀磁半导体提供了理论依据^[11,12].此外, Co 掺 杂TiO2基稀磁半导体也有报道^[13]. 尽管这些稀磁 半导体表现出高于室温的居里温度,但是相比铁磁 金属, 它们的磁性很弱, 磁性来源及稳定性也存在 诸多争议^[14,15]. 2010年12月,《Nature Material》 杂志推出一期以稀磁半导体为主题的专辑报道[16], 其中特别指出以(Ga,Mn)As为代表的III-V族稀磁 半导体居里温度很难再有所提高[17],而已有报道 具有室温或以上居里温度的稀磁半导体或稀磁氧 化物的结果却不具有可重复性[14].近几年来,对 于磁性半导体的研究一方面仍然放在III-V 族稀磁 半导体的制备及其磁性来源的机理阐释和基于稀 磁半导体的原型器件概念的提出^[18-22],另一方面 则重点关注新型高居里温度稀磁半导体的开发和 性能解析^[23-26].其中值得关注的结果包括2011 年中国科学院物理研究所靳常青组^[23] 报道的新型 Li(ZnMn)As稀磁半导体, 通过分别改变Mn和Li 的含量可以实现自旋和载流子浓度的分离调控,但 该稀磁半导体的居里温度仅为50 K. 2013年,又有 (Ba, K)(Zn, Mn)₂As₂稀磁半导体被报道, 也是基 于这种自旋和载流子浓度分离的调控机理而获得, 其居里温度可达180 K^[25]. 2016年,日本田中雅明 组^[26]制备出重掺杂III-V族(Ga,Fe)Sb稀磁半导 体,其居里温度最高达340 K,但基于此材料并无 任何原型器件的展示,特别是能够揭示其室温磁性 来源的电控磁性能的缺乏使得该材料的应用前景 还不太明朗. 对于可应用于室温器件的磁性材料必 须具有足够的热稳定性,这就要求材料的居里温度 至少要达到500 K^[27]. 除此之外, 还有研究尝试通 过降低材料维度制备纳米颗粒使得材料具备室温 铁磁性^[28],或通过拓扑绝缘体掺杂磁性元素获得 极低温度下的电控磁效应^[29],这些材料的实际应 用价值还有待确认.

综上所述,尽管以稀磁半导体为主导的磁性半导体已研究了五十多年,但是迄今为止实现了低温 原型器件功能的稀磁半导体的居里温度仍无法满 足自旋电子器件在室温下工作的需求^[30].因此,探 索提高磁性半导体居里温度的新途径、开发实用型 室温磁性半导体一直是自旋电子学领域的关键研 究课题之一.

磁性金属 Co, Fe 及其合金不仅具有强铁磁性, 其居里温度通常也在 500 K以上,远高于室温.而 CoFe 基合金结构为非晶态时表现出自旋相关的 异常输运特性,其隧穿电子的自旋极化随 Co和 Fe 相对成分变化呈现类似于非晶磁体磁性的 Slater-Pauling 行为,进一步对 CoFe 基非晶合金电子结构 的探测表明其异常隧穿电子的输运特性来源于 s-d 轨道的电子杂化^[31].基于该 CoFe 基非晶合金的自 旋相关的输运特性可以推测其电学和磁学行为具 有可调控性.因此,针对稀磁半导体很难获得室温 内禀磁性的瓶颈,本文另辟蹊径,提出一种制备磁 性半导体的新思路,即在居里温度远高于室温的 CoFe 基磁性非晶合金中引入非金属元素使其导电 行为发生金属到半导体的转变,在保留该非晶合金 室温内禀磁性的同时获得半导体特性.

本文通过在磁性Co-Fe-Ta-B合金体系中引入 氧制备了一系列磁性Co-Fe-Ta-B-O薄膜.薄膜结 构从单相非晶合金过渡到单相非晶氧化物,性能从 金属导电过渡到半导体电性,伴随光学带隙的打 开,薄膜变得透明.单相非晶氧化物薄膜兼具磁性 和半导体电性,居里温度高于600 K,光学带隙约 为2.4 eV,具有室温光致发光现象.基于单相非晶 氧化物磁性半导体和重掺杂n型Si,制备了p-n异 质结,阈值电压约为1.6 V.基于该非晶态磁性半导 体还制备了电控磁器件,通过外加门电压的方式实 现了薄膜饱和磁化强度的调控,证实其载流子调控 磁性的内禀机理.

2 实验方法

采用磁控溅射技术制备了一系列不同氧含量的 (Co_{0.53}Fe_{0.23}Ta_{0.08}B_{0.16})_{100-x}O_x (x = 0, 38和 46, 成分为原子百分比) 薄膜, 镀膜基片包括单晶 Si 片、石英玻璃、SiO₂和镀有Au/Cr复合膜的Si 片.下文中薄膜样品名称简化为S1, S2和S3, 分别

对应的氧含量为0,38%和46%.通过X射线衍射 (XRD)分析和高分辨透射电子显微镜(HRTEM) 观察进行薄膜的结构表征. 采用电子探针显微分 析仪(EPMA)测试薄膜成分.采用磁性测量系统 (SQUID-VSM)测试磁性半导体的磁学性能,包括 磁滞回线(M-H)、场冷(FC)、零场冷(ZFC)和磁化 随温度变化曲线(M-T)等,获得薄膜的饱和磁化 强度、剩磁、矫顽力和居里温度等磁学参数.其中, 测试 M-T 曲线时 SQUID-VSM 系统先以 20 K/min 的升温速率从300 K加热至800 K,并在800 K稳 定化保温2 min, 然后再以20 K/min 的冷却速率 降温至300 K,升温和降温过程中所加外磁场均为 100 Oe. 采用综合物性测试系统 (PPMS-9T) 测试 薄膜材料的电学和磁电输运性能,包括霍尔效应 和磁阻的测试. 采用Lambda 950型紫外/可见/近 红外分光光度计测试薄膜材料的透过率与入射 光波长的关系, 通过透过率曲线拟合 Tauc 公式计 算薄膜的光学带隙;采用Renishaw RM1000型显 微共焦激光拉曼光谱仪测试薄膜材料的光致发光 (PL)谱,估算能带带隙,并与其光学带隙进行参 比. 采用Keithley2450数字电压电流源表测试p-n 异质结电学特性. 通过离子液体外加门电压的方式 测试薄膜的电控磁性能,离子液体种类为N,N-二 甲基-N-甲基-N-(2-甲基乙酯基)季铵磺酸亚胺盐

(DEME-TFSI), 采用 Agilent 2901A 数字源表对电 控磁器件施加门电压.

3 实验结果与讨论

如图1(a)所示,采用磁控溅射技术在磁性非 晶合金Co53Fe23Ta8B16中原位引入氧制备非晶态 透明磁性半导体薄膜材料.相比磁性金属(FM) Co 和Fe, 非磁性元素 (NFM) Ta 和 B 与 O 有更强的亲 和力^[32].因此,NFM元素先与氧结合,并在氧离 子库仑作用下扩散到颗粒表面,随薄膜生长作为非 晶合金颗粒之间的非晶态氧化物界面存在. 随着 氧的不断引入, FM元素Co和Fe也会发生部分氧 化.因此,非晶合金颗粒尺度不断缩小,而氧化物 界面不断展宽. 最后, 非晶合金颗粒相完全消失, 获得单相非晶氧化物S3,如图1(b)所示.制备的 $(Co_{0.53}Fe_{0.23}Ta_{0.08}B_{0.16})_{100-x}O_x$ (x = 0, 38 ft 46) 薄膜结构从单相非晶合金过渡到纳米非晶合金颗 粒复合结构, 最后非晶合金颗粒相完全消失, 转变 为单相非晶态金属氧化物结构,如图1(c)-图1(e) 所示. 插图为薄膜的选区衍射花样, 相应地从非晶 合金的衍射宽环演化到相对更宽的非晶态金属氧 化物的衍射环,而纳米颗粒复合薄膜兼具非晶合金 和非晶态金属氧化物衍射环的特征.

图 1 薄膜样品的结构表征 (a) 原位引入氧制备非晶态薄膜的实验示意图; (b) 单相非晶合金演化为纳米颗粒结构的氧化 机理; (c)—(e) S1, S2, S3 样品的高分辨图像, 插图为相应的选区衍射花样

Fig. 1. Structural characterization of the as-deposited thin films: (a) Schematic diagram for the formation of amorphous thin films; (b) oxidation mechanism for the formation of nanogranular structure; (c)–(e) high resolution TEM images of S1, S2, S3 samples, the insets are the corresponding selected-area electron diffraction patterns.

薄膜样品的电学性能如图2(a)所示,所有 样品电阻率和温度均呈现负相关特性,且随氧 含量增加,薄膜样品的非金属电输运特性更为 显著. S1—S3薄膜样品的室温电阻率分别约为 10⁻⁴,10⁻²和1Ω·cm,其中S1的电阻率属于非晶 合金范畴,而S2和S3进入了半导体电阻率范围 (10⁻³—10¹²Ω·cm),特别是单相非晶态金属氧化 物S3电阻率比非晶合金S1高了四个数量级.S3样 品电阻率随温度的变化特征表明该薄膜为非晶态 半导体,而S2样品具有非晶合金颗粒和非晶态金 属氧化物界面的结构特征,电学性能介于S1和S3 样品之间.

非晶态半导体能带结构和晶态半导体有所不同,其能带结构包括类似于价带和导带的扩展态、带尾定域态以及带隙中的缺陷定域态^[33].电子可以处在导带、价带、带尾以及带隙的定域态中,这些电子对于输运过程都有贡献,但是其贡献大小及其

作用与温度相关.对于非晶态半导体而言,直流电 导率主要包括以下几个部分:1)费米能级附近的 空域态跳跃传导;2)非带尾定域态中的跳转传导; 3)扩展态中的传导.而费米能级附近的空域跳跃 传导包括近程跳跃传导和低温时的变程跳跃传导. 非晶态半导体电导率(σ)的综合表达式为

$$\sigma = \sigma_0 \exp\left(-\frac{E_{\rm c} - E_{\rm F}}{k_{\rm B}T}\right) + \sigma_1 \exp\left(-\frac{E_1}{k_{\rm B}T}\right) + \sigma_2 \exp\left(-\frac{E_2}{k_{\rm B}T}\right) + \sigma_3 \exp\left(-\frac{B}{T^{1/4}}\right), \quad (1)$$

其中 $k_{\rm B}$ 为玻尔兹曼因子, T为温度, $E_{\rm c}$ 为迁移率边 能量, $E_{\rm F}$ 为费米能级, E_1 和 E_2 分别对应带尾态和 带隙中缺陷定域态的电子跳跃传导激活能; σ_0 , σ_1 , σ_2 , σ_3 及B均为与材料相关的常量.上式的前三项 分别对应于扩展态电导、带尾态电导和带隙中缺陷 定域态电导, 第四项是在极低温度下变程跳跃导电 的贡献.

图 2 薄膜样品的电学性能 (a)电阻率随温度的变化曲线; (b)电阻率和温度的拟合曲线; (c) PE 基底镀有 S3 薄膜的样品 被弯折的图像; (d) 弯折前后 S3 样品电阻没有变化

Fig. 2. Electrical properties of the as-deposited thin films: (a) The plot of the normalized resistivity (ρ/ρ_0) versus temperature (T); (b) the fitting of $\ln(\rho/\rho_0)$ versus $1/T^{-1/2}$; (c) image for the bending of S3 thin film deposited on a PE substrate; (d) *I-V* curves after bending.

低于 65 K, S3样品导电机理符合 Mott 的变程 跳跃导电的四分之一定律,如图 2 (a)中插图所示. 高于 65 K, S3样品导电机理符合 $\ln(\rho/\rho_0) \propto T^{-1/2}$ 关系,这里电子-电子相互作用和弱局域等量子相 干效应可能对其导电行为也起到了一定作用,如 图 2 (b) 所示. S3 的电学行为表明该薄膜具有半导 体导电特性.

此外, 非晶氧化物半导体没有晶态材料有序晶 格结构的严格限制, 在外力作用下原子间可以发生 相对位置的转动或间距的调整, 构型在原子尺度上 可以通过β弛豫的形式进行相互转换, 使得非晶氧 化物具有一定的变形和回复能力, 这种独特性能可 用于制备柔性器件^[34,35]. 如图2(c)所示, 对S3样 品进行弯折实验后测试其 *I-V* 曲线, 发现电阻在变 形前后并没有明显变化, 如图2(d)所示. 该结果表 明非晶氧化物半导体S3可应用于柔性电子器件的 制备.

相比具有金属导电特性的非晶合金薄膜S1,

S3随着半导体带隙的打开变得透明,如图3(a)所示.可见光波长范围通常指390—780 nm之间,其中正常视力的人眼对波长约为555 nm的电磁波最为敏感,S3在该波长的透过率约为65%,且透过率随波长不断增加,在远红外波段的透过率可达90%以上.

对于非晶态半导体通常采用Tauc公式来计算 光学带隙:

$$(\alpha h \upsilon)^2 = \left(\frac{\ln T_{\rm Tran}}{t} h \upsilon\right)^2 = C \left(h\upsilon - E_{\rm g}\right), \quad (2a)$$

$$(hv \ln T_{\rm Tran})^2 = Ct^2 (hv - E_{\rm g}),$$
 (2b)

其中 α 为S3的光吸收系数, T_{Tran} 为透过率, t为薄 膜厚度, hv为光波的能量, C为常数, E_{g} 为光学带 隙. 通过绘制 ($hv \ln T_{\text{Tran}}$)² 与hv 的关系图可以得 出S3的光学带隙约为2.4 eV, 如图3(c)所示.该带 隙与基于S3测得的光致发光谱对应的带隙基本一 致, 如图3(d)所示.

图 3 薄膜样品的光学性能 (a) 相比非晶合金 S1, 非晶态氧化物半导体 S3 变得透明; (b) S3 的透过率随波长的变化关系; (c) Tauc 公式拟合 S3 透过率得出 S3 光学带隙约为 2.4 eV; (d) S3 的光致发光谱, 表明其光学带隙约为 2.5 eV Fig. 3. Optical properties of the as-deposited S3 thin films: (a) Optical transparency of S3 in comparison with S1; (b) the transmission variation with the wavelength; (c) the Tauc plot for S3 with a thickness of about 25 nm, giving a direct bandgap of ~2.4 eV; (d) room-temperature photoluminescence spectrum measured for S3 with a thickness of about 100 nm.

S1—S3的磁滞回线显示这些薄膜均具有室温 铁磁性,如图4(a)所示.随氧含量的增加,薄膜样 品的饱和磁化强度从S1的730 emu/cm³ 增加至S2 的 819 emu/cm³, 最后降低至 S3 的 469 emu/cm³. 掺氧后制备的S2的饱和磁化最高,可能由其独特 的纳米非晶合金颗粒复合非晶氧化物界面的结构 导致. 纳米磁性非晶合金颗粒与磁性非晶氧化物之 间具有磁交互作用,以这种界面作为媒介,颗粒之 间可以通过耦合作用获得长程磁有序. 与此同时, 氧的引入调制了原有非晶合金的无序原子密堆结 构,特别是非晶氧化物界面处,磁性原子间距可能 被拉大,从而增强磁性原子之间的交换作用,导致 薄膜整体磁性的增大. 随着薄膜样品的完全氧化, 磁性原子占原子的百分比降低,导致薄膜整体磁性 降低. 由于薄膜样品具有显著的形状各向异性, 面 内为其易磁化轴,S3面外磁化达到饱和时对应的外 场约为1 T, 如图4(a)所示.

当样品置于磁场中,其电阻会发生变化,这种 由外加磁场引起的电阻变化称为磁致电阻(*R*_M), 可以表示为

$$R_{\rm M} = \frac{R(H) - R(0)}{R(0)} \times 100\%, \qquad (3)$$

其中R(H)为外加磁场H下薄膜的电阻,R(0)是无 磁场作用时薄膜的电阻. 当电阻值随着外加磁场 增加时,称为正磁电阻效应;反之,称为负磁电阻 效应. 随氧含量的增加, S1-S3薄膜的磁电阻效应 逐渐变得显著,其中S2和S3表现为负磁电阻效应, 在外加磁场为6T时磁电阻值分别达到-2.6%和 -6.3%, 如图4(b)所示. 磁性薄膜的磁电阻主要由 载流子的自旋相关散射所引起, 散射的概率取决于 导电电子自旋与局域原子磁矩方向的相对取向. 自 旋方向与局域磁矩一致的电子受到的散射作用很 弱,而相反时受到强烈的散射作用.随面外磁场增 加,磁性薄膜S2和S3逐渐被磁化,局域磁矩排列 方向逐渐趋向一致.因此,载流子受到局域磁矩的 自旋相关散射作用逐渐变小,薄膜电阻降低,产生 负磁电阻效应.磁性薄膜面外磁化达到饱和后,即 样品内部所有能够提供宏观磁性的磁矩排列基本 一致, 磁电阻也趋向饱和, 如图4(b) 所示.

特别需要指出的是, S1磁电阻效应非常微弱, 低场下的负磁电阻效应产生的机理与S2和S3一 样,但在高场下薄膜达到饱和后, S1表现为异常正 磁阻效应,如图4(c)所示.这种正磁电阻效应通常 可在非磁性金属和合金中观测到,主要因为运动的 载流子在磁场中受到洛伦兹力的作用,沿电流方向 发生偏转或成螺旋线运动,从而导致电阻增大.但 是这种电阻随磁场变化非常微弱,且随磁场增加很 难达到饱和.磁性非晶合金S1表现出类似于非磁 性金属的异常正磁电阻效应,可能由于其导电电 子与过渡族磁性元素Co或Fe之间存在自旋轨道 耦合作用^[17],同时电子结构发生了s-d能带杂化,

图 4 薄膜样品的室温磁学性能 (a)磁滞回线; (b)磁阻 效应; (c) S1 磁电阻的放大图

Fig. 4. Magnetic properties of the as-deposited thin films: (a) M-H curves; (b) magnetoresistance; (c) enlargement of magnetoresistance of S1.

部分导电电子自旋极化,使得包括非晶态结构导致的电子波函数局域化和自旋极化电子之间的相互作用等在内的量子干涉效应主导了S1的磁电输运特性,产生了这种异常正磁阻效应^[36].

随薄膜氧含量的增加,非晶合金S1转变为非 晶态半导体S3,同时由于带隙打开,薄膜变得透明, 如图2和图3所示.此外,S3还具有室温铁磁性,如 图4所示.进一步的实验表明,S3居里温度高于 600 K, 如图 5 (a) 所示. 低于 600 K, S3 磁化强度随 温度升高逐渐降低,和传统磁性金属的磁化随温度 变化规律相一致. 高于600 K, S3磁化随温度变化 曲线上出现了一个小平台,表明600 K可能为非晶 氧化物S3的玻璃转变温度(Tg). 在600 K以上S3 发生非晶态结构弛豫和初始晶化,使得热扰动引起 的自旋翻转和结构弛豫、晶化引起的磁性增强达到 平衡.因此,S3磁化强度随温度升高基本保持不变, 与已有报道非晶合金 CoFeMB $(M = Ta ext{ of } Hf)$ 纳 米晶化后的结果类似^[37].高于705 K,随晶粒不断 长大, 晶化引起的磁性增强逐渐占据主导. 因此, S3磁性随温度开始增强,并在升温至800 K 后磁矩 仍在持续增大. 这是由于系统到达设定温度后会进 行稳定化保温,该保温时间大于2 min. 在保温过 程中晶粒尺度进一步增大,导致S3磁矩继续增大, 且在冷却时该晶化状态得以保持.因此,在相同的 外磁场100 Oe下,降温时晶化态的S3样品显示出 比升温时非晶态或晶化程度较低状态的样品更高 的磁化强度. 由于这种晶化导致的S3样品磁矩的 差别使得M-T曲线在降温和升温时形成回路,如 图5(a)所示.

低温时S3 FC和 ZFC 曲线发生了分离, 出现 了自旋玻璃现象, 如图5(b)所示.表明S3 局域磁 矩在低温被冻结, 磁矩取向变得杂乱无序, 薄膜净 磁矩减少, 磁性变弱.随温度升高, 被冻结的磁矩 在热作用下逐渐"解冻", 慢慢随外场磁化, 在88 K 以上时 ZFC 曲线和FC 曲线重合在一起, 表明该温 度为自旋玻璃态和铁磁态的转变温度, 如图5(b) 所示.

以上结果显示源于非晶合金的S3兼具磁性和 半导体电性,是一种新型非晶态磁性半导体.霍尔 效应测试结果^[38]显示该磁性半导体的载流子类型 为空穴,载流子浓度约为10²⁰ cm⁻³.类似于氧空 位缺陷诱导的p型HfO₂半导体^[39],S3 磁性半导体 的空穴载流子来源于氧空位缺陷,可以通过改变氧 含量调控载流子的浓度.由于载流子类型主要取决于非晶态材料的局域原子构型和过渡族金属离子的价态^[40],推测通过改变磁性元素 Co 和 Fe 的原子百分比可以改变 Co-Fe-Ta-B-O 薄膜的载流子类型,从而制备出 n 型磁性半导体.

为了进一步证实S3作为半导体的应用价值, 基于此p型磁性半导体S3和重掺杂n型单晶Si制 备了p-n异质结,该异质结性能良好,阈值电压约 1.6 V,如图6(a)所示.作为有望实现多功能、高性 能、快速响应、低功耗的非易失性自旋电子学器件 的关键材料之一,磁性半导体的电性和磁性并不 是独立存在的,而是具有交互耦合作用^[2].而电场 调控磁性正是基于这种电磁交互作用实现了对电 荷和自旋的同时操控^[9].如图6(b)所示,通过离子 液体栅极施加门电压可以调控S3的饱和磁化强度. 外加正电压时,电子在电场作用下由电极进入S3, 复合S3的空穴载流子,使得载流子浓度降低,导致 饱和磁化强度降低.反之,施加负电压使得S3中电 子在电场作用下进入电极,导致S3中空穴载流子 的相对浓度升高,饱和磁化强度增大.对应正电压 1.2 V, S3的饱和磁化强度降低了54%,如图6(b)
所示.对S3 室温电控磁的实现证实非晶态磁性半
导体S3具有载流子调制的内禀磁电耦合特性^[38].

图 6 基于 p 型磁性半导体 S3 的原型器件制备 (a) 基于 S3 和重掺杂 n 单晶 Si 的 p-n 异质结, 阈值电压约为 1.6 V, n 型 Si 电阻率为 $10^{-3} \Omega \cdot cm$; (b) 离子液体栅极电控磁器件 Fig. 6. Fabrication of prototype devices based on the ptype magnetic semiconductor S3: (a) Demonstration of a p-n heterojunction based on S3 and heavily doped ntype single crystalline Si with a resistivity of $10^{-3} \Omega \cdot cm$; (b) ionic liquid gating device for the electric field-control of ferromagnetism based on S3.

4 结 论

探索高居里温度磁性半导体,并基于此材料开 发室温实用型自旋电子器件一直是自旋电子学领 域的研究目标.针对这一关键科学问题,采用与传 统稀磁半导体制备方法相反的新思路,在居里温度 远高于室温的磁性非晶合金中引入诱发半导体电 性的元素使磁性金属转变为半导体,在保留原有高 温内禀磁性的同时获得半导体特性,开发出居里温 度高于 600 K的新型 CoFeTaBO 磁性半导体.该磁 性半导体为p型,带隙约为2.4 eV,具有室温光致 发光现象.基于该p型磁性半导体与n型单晶硅集 成实现了 p-n异质结的制备.与此同时,对于载流 子调制磁性的磁性半导体而言,其电学和磁学性能 相互关联;而基于此新型磁性半导体制备的电控磁 器件通过外加门电压调控其载流子浓度,实现了室 温磁性的显著调控,进一步证实该p型磁性半导体 的本征电磁耦合特性.

感谢清华大学宋成教授、周向俊、刘文剑和张红霞,日本东北大学王中长教授、Louzguine教授、陈明伟教授,香港理工大学王向荣教授,中国科学院物理研究所谷林教授和施晋安博士在实验上的帮助和讨论.

参考文献

- [1] Waldrop M M 2016 Nature 530 144
- [2] Ohno H 1998 Science **281** 951
- [3] Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109 (in Chinese) [赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109]
- [4] Kuang L A, Liu X C, Lu Z L, Ren S K, Liu C Y, Zhang F M, Du Y W 2005 Acta Phys. Sin. 54 2934 (in Chinese) [匡龙安, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都 有为 2005 物理学报 54 2934]
- [5] What don't we know? (special section) 2005 Science 309 82
- [6] Kasuya T, Yanase A 1968 Rev. Mod. Phys. 40 684
- [7] Munekata H, Ohno H, Molnar S, Segmüller A, Chang A A, Esaki L 1989 *Phys. Rev. Lett.* 63 1849
- [8] Ohno Y, Yong D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790
- [9] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944
- [10] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019
- [11] Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1
- [12] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673
- [13] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 *Science* 291 584
- [14] Interview with Chambers S 2010 Nat. Mater. 9 956
- [15] Coey J M D, Chambers S A 2008 MRS Bull. 33 1053
- [16] Editorial 2010 Nat. Mater. 9 951
- [17] Samarth N 2010 Nat. Mater. 9 955
- [18] Zhou S Q, Li L, Yuan Y, Rushforth A W, Chen L, Wang Y T, Bottger R, Heller R, Zhao J H, Edmonds K W, Campion R P, Gallagher B L, Timm C, Helm M 2016 *Phys. Rev. B* 94 075205
- [19] Xu D Q, Li P X, Lou Y L, Yue G L, Zhang C, Zhang Y, Liu N Z, Yang B 2016 Acta Phys. Sin. 65 197501 (in Chinese) [徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波 2016 物理学报 65 197501]
- [20] Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187

- [21] Jungwirth T, Wunderlich J, Nová V, Olejník K, Gallagher B L, Campion R P, Edmonds K W, Rushforth A W, Ferguson A J, Němec P 2014 *Rev. Mod. Phys.* 86 855
- [22] Zhao Q, Xiong Z H, Luo L, Sun Z H, Qin Z Z, Chen L L, Wu N 2017 Appl. Surf. Sci. 396 480
- [23] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel AA, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 *Nat. Commun.* 2 442
- [24] Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412
- [25] Zhao K, Zeng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F L, Uemura Y J, Dabkowsk H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, Jin C Q 2013 Nat. Commun. 4 1442
- [26] Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401
- [27] Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173
- [28] Coey M, Ackland K, Venkatesan M, Sen S 2016 Nat. Phys. 12 694
- [29] Fan Y, Kou X, Upadhyaya P, Shao Q, Pan L, Lang M, Che X, Tang J, Montazeri M, Murata K, Chang L T, Akyol M, Yu G, Nie T, Wong K L, Liu J, Wang Y, Tserkovnyak Y, Wang K L 2016 Nat. Nnotech. 11 352

- [30] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, Molnar S 2011 Nano Lett. 11 2584
- [31] Paluskar P V, Lavrijsen R, Sicot M, Kohlhepp J T, Swagten H J M, Koopmans B 2009 Phys. Rev. Lett. 102 016602
- [32] Gale W F, Totemeir T C 2004 Smithells Metals Reference Book (Ch. 8) (Burlington: Elsevier Buterworth-Heinmann) Table 8.8e
- [33] Chen G H, Deng J X, Cui M, Song X M 2012 Novel Thin Film Materials for Electronics (Beijing: Chemical Industry Press) p28 (in Chinese) [陈光华, 邓金祥, 崔敏, 宋雪梅 2012 新型电子薄膜材料(北京:化学工业出版社)第 28页]
- [34] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488
- [35] Kim Y H, Heo J S, Kim T H, Park S, Yoon M H, Kim J, Oh M S, Yi G R, Noh Y Y, Park S K 2012 *Nature* 489 128
- [36] Manyala N, DiTusa J F, Aeppli G, Young D P, Fisk Z 2000 Nature 404 581
- [37] Pellegren J P, Sokalski V M 2015 *IEEE Trans. Magn.* 51 3400903
- [38] Liu W J, Zhang H X, Shi J, Wang Z C, Song C, Wang X R, Lu S Y, Zhou X J, Gu L, Louzguine-Luzgin D M, Chen M W, Yao K F, Chen N 2016 Nat. Commun. 7 13497
- [39] Hildebrandt E, Kurian J, Müller M M, Schroeder T, Kleebe H J, Alff L 2011 Appl. Phys. Lett. 99 112902
- [40] Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano M, Kamiya T, Hosono H 2003 Adv. Mater. 15 1409

SPECIAL ISSUE — Progress in research of amorphous physics

Transparent magnetic semiconductors from ferromagnetic amorphous alloys^{*}

Chen Na[†] Zhang Ying-Qi Yao Ke-Fu

(Key Laboratory for Advanced Materials Processing Technology (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China)

(Received 26 May 2017; revised manuscript received 20 June 2017)

Abstract

Magnetic semiconductors hold a very special position in the field of spintronics because they allow the effective manipulations of both charge and spin. This feature is important for devices combining logic functionalities and information storage capabilities. The existing technology to obtain diluted magnetic semiconductors (DMSs) is to dope magnetic elements into traditional semiconductors. So far, the DMSs have attracted much attention, yet it remains a challenge to increasing their Curie temperatures above room temperature, particularly for those III–V-based DMSs. In contrast to the concept of doping magnetic elements into conventional semiconductors to make DMSs, here we propose to introduce non-magnetic elements into originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. To demonstrate this concept, we introduce oxygen into a ferromagnetic amorphous alloy to form semiconducting thin films. All the thin films are deposited on different substrates like Si, SiO₂ and quartz glass by magnetron sputtering. The structures of the deposited thin films are characterized by a JEOL transmission electron microscope operated at 200 kV. The optical transparencies of the samples are measured using Jasco V-650 UV-vis spectrophotometer. The photoluminescence spectra of the samples are measured using RM1000 Raman microscope. Electrical properties of the samples are measured using Physical Property Measurement System (PPMS-9, Quantum Design). Magnetic properties, i.e., magnetic moment-temperature relations, are measured using SQUID-VSM (Quantum Design). With oxygen addition increasing, the amorphous alloy gradually becomes transparent. Accompanied by the opening of bandgap, its electric conduction changes from metal-type to semiconductor-type, indicating that the inclusion of oxygen indeed mediates a metal-semiconductor transition. For different oxygen content, the resistivities of these thin films are changed by about four orders of magnitude. Notably, all of them are ferromagnetic. All the samples show anomalous Hall effect. Furthermore, their magnetoresistance changes from a very small positive value of about 0.09% to a negative value of about -6.3% under an external magnetic field of 6 T. Correspondingly, the amorphous structure of the thin film evolves from a single-phase amorphous alloy to a single-phase amorphous metal oxide. Eventually a p-type CoFeTaBO magnetic semiconductor is developed, and has a Curie temperature above 600 K. The carrier density of this material is $\sim 10^{20}$ cm⁻³. The CoFeTaBO magnetic semiconductor has a direct bandgap of about 2.4 eV. The room-temperature photoluminescence spectra further verify that its optical bandgap is ~ 2.5 eV. The demonstrations of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflect its p-type semiconducting character and the intrinsic ferromagnetism modulated by its carrier concentration. Our findings may pave a new way to realizing high Curie temperature magnetic semiconductors with unusual multi-functionalities.

Keywords: amorphous alloys, magnetic semiconductor, magnetic properties, magnetotransport properties

PACS: 61.43.Dq, 75.50.Pp, 75.70.-i, 75.47.-m

DOI: 10.7498/aps.66.176113

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51471091).

[†] Corresponding author. E-mail: chennadm@mail.tsinghua.edu.cn